Modular Optical Aperture Building Blocks (MOABB) Christopher V. Poulton, Matthew J. Byrd, Peter Russo, Erman Timurdogan, Michael Whitson, Ehsan Hosseini, Benjamin Moss, Zhan Su, Diedrik Vermeulen, and Michael R. Watts (CEO) **Analog Photonics** ### Driving Applications: Solid-State Beam Steering, Chip-Scale LiDAR, and Free-Space Communication #### **Program Goal** | Specification | Phase I
BAA | Phase II
BAA | Phase III
BAA | |------------------------------------|----------------------|-----------------|-------------------| | Aperture Size | 1mm² | lem² | 10cm ² | | P-P Sweep Time | 40us | 10as | lus | | Field of Regard | 70°x12° | 100°x14° | 110°x16° | | Aperture Fill Factor | 50% | 70% | 95% | | # simultaneous beams | - 1 | 16 | 16 | | RF Bandwidth | 3 GHz | 8 GHz | 8 GHz | | Wall-plug Efficiency | 1% | 2% | 5% | | Radiated Power Density | 0.5W/cm ² | 0.5W/cm² | 1W/cm² | | % Optical Power in
formed beams | 50% | 80% | 95% | - integrated flat optical aperture with a 10cm2 area - Based on tiling smaller unit-cell optical apertures - Enables high-power optical beam transmitting and receiving with solid-state beam steering #### **Integration Platform** photonic systems Silicon photonics is a chip technology enabling optical "circuits" based on laser light guided in silicon optical nanowires. #### **Optical Phased Arrays** Array Factor Element Factor **RADAR Phased Array** - Phased arrays are arrays of electro-magnetic antennas with individual phase control - Tuning the phases allows for arbitrary pattern #### **2D Beam Steering** - 2D beam steering is achieved by utilizing element phase shifters and changing wavelength - Steering ranges up to 70° x 18° have been demonstrated with pitches down to 1.35um #### **Integrated FMCW LiDAR** - Distance is proportional to electrical beat frequency - Coherent LiDAR system created with two - Up to 40m real-time LiDAR demonstrated - the velocity of targets #### **Free-Space Communication Passive OPAs** # **Active OPAs** - 50m free-space data link achieved at a 10Gbps - Active demo of OPA-based free-space communication successful with beam steering #### **Laser Integration** - The high integration of silicon photonics allows for co-packaging with an integrated III/V laser - Above shows an optical phased array chip copackaged with a III/V sampled grating distributed Bragg reflector (SG-DBR) laser - Optical coupling between the two chips is realized with two ball lenses that performs mode-matching between the two couplers #### **Applications** #### **Automotive** #### Robotics #### **Aerial Vehicles**